Group Sparse Reconstruction of Multi-Dimensional Spectroscopic Imaging in Human Brain in vivo
نویسندگان
چکیده
Four-dimensional (4D) Magnetic Resonance Spectroscopic Imaging (MRSI) data combining 2 spatial and 2 spectral dimensions provides valuable biochemical information in vivo; however, its 20–40 min acquisition time is too long to be used for a clinical protocol. Data acquisition can be accelerated by non-uniformly under-sampling (NUS) the ky − t1 plane, but this causes artifacts in the spatial-spectral domain that must be removed by non-linear, iterative reconstruction. Previous work has demonstrated the feasibility of accelerating 4D MRSI data acquisition through NUS and iterative reconstruction using Compressed Sensing (CS), Total Variation (TV), and Maximum Entropy (MaxEnt) reconstruction. Group Sparse (GS) reconstruction is a variant of CS that exploits the structural sparsity of transform coefficients to achieve higher acceleration factors than traditional CS. In this article, we derive a solution to the GS reconstruction problem within the Split Bregman iterative framework that uses arbitrary transform grouping patterns of overlapping or non-overlapping groups. The 4D Echo-Planar Correlated Spectroscopic Imaging (EP-COSI) gray matter brain phantom and in vivo brain data are retrospectively under-sampled 2×, 4×, 6×, 8×, and 10× and reconstructed using CS, TV, MaxEnt, and GS with overlapping or non-overlapping groups. Results show that GS reconstruction with overlapping groups outperformed the other reconstruction methods at each NUS rate for both phantom and in vivo data. These results can potentially reduce the scan time of a 4D EP-COSI brain scan from 40 min to under 5 min in vivo. Algorithms 2014, 7 277
منابع مشابه
A novel parallel sparse MRSI reconstruction scheme
INTRODUCTION Low SNR of proton magnetic resonance spectroscopic imaging (MRSI) in vivo data for a small voxel size (e.g., 0.4cc) necessitates multiple-average acquisition that leads to a long scan time. This issue is even more pronounced when one attempts to acquire J-resolved spectroscopic data using multi-echo acquisition [3] in order to resolve metabolite concentrations such as glutamate and...
متن کاملCorrelated spectroscopic imaging of calf muscle in three spatial dimensions using group sparse reconstruction of undersampled single and multichannel data.
PURPOSE To implement a 5D (three spatial + two spectral) correlated spectroscopic imaging sequence for application to human calf. THEORY AND METHODS Nonuniform sampling was applied across the two phase encoded dimensions and the indirect spectral dimension of an echo planar-correlated spectroscopic imaging sequence. Reconstruction was applied that minimized the group sparse mixed ℓ2,1-norm of...
متن کاملMethods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review
Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...
متن کاملParallel spectroscopic imaging reconstruction with arbitrary trajectories using k-space sparse matrices.
Parallel imaging reconstruction has been successfully applied to magnetic resonance spectroscopic imaging (MRSI) to reduce scan times. For undersampled k-space data on a Cartesian grid, the reconstruction can be achieved in image domain using a sensitivity encoding (SENSE) algorithm for each spectral data point. Alternative methods for reconstruction with undersampled Cartesian k-space data are...
متن کاملPerformance Evaluation of FBP Reconstruction in SPECT Imaging
Introduction: The purpose of this study is to define the optimal parameters for the tomographic reconstruction procedure in a routine single photon emission tomography. The Hoffman brain phantom is modified to evaluate the reconstruction method. The phantom was imaged in a 3 and 2-dimensional conformation and the results were compared. Materials and Methods: The 2D phant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithms
دوره 7 شماره
صفحات -
تاریخ انتشار 2014